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Abstract. The paper presents original expressions for the temperature of the superconducting
transition TC as well as for the coefficient of the isotope effect α in non-adiabatic superconductors
with strong electron correlations and variable charge-carrier density. The equation for the cut-
off momentum Qc due to strong electron correlations is also derived. The dependence of the
quantities TC , α and Qc on the charge-carrier density n in quasi-two-dimensional and three-
dimensional systems is studied. At the point of its maximum, TC is shown to easily reach the
values characteristic of high-TC materials because of non-adiabaticity. The quantity α depends
strongly on the theory parameters and achieves values in the range 0.2–0.4. It is found that the field
of existence of superconductivity and the behaviour of Qc(n) are determined by the dimensionality
of the system.

1. Introduction

In contemporary low-temperature physics, describing the properties of high-TC materials
is extremely complicated. They may be accounted for by the existence in the system of
strong electron correlations induced by the Coulomb interaction between electrons, and of
strong electron–phonon interaction. A number of approaches to this task are reviewed in,
for example, [1]. It is worth noting here that dielectric, magnetic and superconducting phase
transitions may occur in these materials. Therefore, to build a theory of these transitions taking
account of the above-mentioned interactions is next to impossible, unless radical simplifications
are introduced. Nevertheless, at a certain density of charge carriers it is noted that a metallic
state is induced in these materials. In the metallic state, electron states are strongly modified, but
not destroyed by correlations. So, transition to the superconducting state accompanied by the
formation of Cooper pairs (the BCS scenario) or of localized pairs (the scenario of Schafroth)
may occur. Hence it is of undoubted interest to study superconducting properties taking into
account some of the striking features characteristic of high-TC materials. Among them are:
a layered structure (multiband character of the system), the existence of van Hove–Lifshitz
singularities in the electron-state density and a variable density of charge carriers [2–9]. Also,
oxide ceramics (organic superconductors and fullerenes) have low values of the Fermi energy
(EF ) that can be of the same order as the Debye energy (ωD). As a result there is violation of the
Migdal theorem [10], used in the theory of ordinary superconductors if ωD � EF . The same
will be true for the systems with not only the electron–phonon pairing mechanism but also the
arbitrary electron–boson one, which leads to a superconducting state if the Fermi energy and the
characteristic boson frequency are quantities of the same order. So, if the materials mentioned
above are in the metallic state with the arbitrary pairing-mediated mechanism, we have to go
beyond the BCS–Bogoliubov theory through taking account of vertex and intersecting diagrams
for the electron–boson interaction, which corresponds to additional multiparticle effects.
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Estimations of the vertex contributions PV and Pc, and of the temperature of the super-
conducting transition TC with account taken of the effects of non-adiabaticity (when we go
beyond the framework of the Migdal theorem) are given in some papers [11–15]. There, a three-
dimensional system with a symmetrical filling of the energy bands is discussed, and both the
Migdal parameter m = ωD/EF and the cut-off parameter of the electron–phonon interaction
Qc = qc/2kF are introduced. The introduction of the latter parameter is based on studies of
the influence of strong electron correlations on the electron–phonon interaction [16, 17]. In
those papers, low values of Qc (Qc � 1), characteristic of materials with strong electron
correlations, are shown to favour both the inducing of positive values of the vertex functions
and increase of the temperature of the superconducting transition. Even at intermediate values
of interaction couplings of the electron–phonon interaction, λ ∼ 0.5–1, high values of TC can
be obtained. It is possible to theoretically describe the properties of the systems for given
values of the Fermi energy (half-filling of the energy bands).

Due to the strong anisotropy of the oxide superconductors, the concentration of the charge
carriers changes with variations of the oxygen content and on introduction of a non-isovalent
impurity.

In the present paper the main aim is to study the dependence of both the temperature
of the superconducting transition TC and the coefficient of the isotope effect α as functions
of the charge-carrier density. This study will be made for two-dimensional (or quasi-two-
dimensional) and three-dimensional systems with non-adiabatic effects taking into account
strong electron correlations. It is shown that the imaginary parts of the vertex functions PV

and Pc (which are omitted in the above-mentioned papers) play an essential role in determining
the field of existence of superconductivity and allow us to derive an equation for the quantity
Qc, which in [11–15] is considered as a theoretical parameter. The quantity Qc depends on the
charge-carrier density, and the character of this dependence is determined by the dimensionality
of the system. If the energy band is symmetrically filled [12, 13], superconductivity in the
system is possible only at Qc = 0. Therefore, the quantity Qc cannot be considered as a
theoretical parameter taking various values for this system.

The electron–phonon interaction in the systems considered is undoubtedly playing an
essential role. In addition to this fact, as regards the thermodynamic properties of the system
the suggested model is valid for an arbitrary electron–boson interaction that causes super-
conductivity in a metallic state if the transferred momentum is small (q � 2kF ). So, in our
opinion this fact is significant, because a pairing mechanism in high-TC materials has not been
established yet.

This paper has the following structure. Section 2 presents equations for the mass operators
and the Green functions. Also, the vertex functions PV and Pc for two-dimensional and
three-dimensional systems with strong electron correlations are calculated. Section 3 contains
analytical expressions for the temperature of the superconducting transitionTC and the equation
for determining the quantity Qc, dependent on the charge-carrier density. The last section
discusses numerical calculations, and graphical dependences of the quantities Qc, TC and α

on the charge-carrier density. Also the main results of the paper are discussed there.

2. Basic equations; calculation of vertex functions

We start from the Frohlich Hamiltonian, including an electron–phonon interaction with the
interaction coupling gpp1

, determined by the relationship [13]

g2
pp′ = g2γ θ(qc − |p − p′|) (1)
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where qc is a cut-off momentum of the electron–phonon interaction and γ is determined from
the condition 〈〈

g2
pp′

〉〉
FS

= g2. (2)

Here 〈〈· · ·〉〉FS denotes averaging over the Fermi surface. This choice of the interaction
coupling is based on the results of studies [16,17] that demonstrate strong electron correlations
cutting off the electron–phonon interaction at the momentum qc � 2pF .

We introduce first the temperature (Matsubara) one-electron Green functions:

Gβα(xx
′) = − 〈

T ψβ(x)ψ
+
α (x

′)
〉

Fββ ′(xx ′) = − 〈
T ψβ(x)ψβ ′(x ′)

〉
(3)

and then the phonon Green function;

D(xx ′) = − 〈
T ϕ(x)ϕ(x ′)

〉
. (4)

Here x = (x, τ ), ψα(x) = eτHψα(x)e−τH , ψ+
α (x) = eτHψ+

α (x)e−τH , H is a complete Hamil-
tonian of an electron–phonon system and 〈· · ·〉 implies averaging over the states of the system
of interacting particles.

In expressions (3) and (4) we pass over to the interaction representation and use the
perturbation theory [18] for the electron–phonon interaction. In this way, for the Green
functions (3) in p–" representation we derive the following expressions:

G(p, ") = − i" + εp + M(−p,−")

A(p, ")
F↑↓(p, ") = −&(p, ")

A(p, ")

A(p, ") = [
i" − εp + M(p, ")

] [−i" − εp − M(−p,−")
]

+ |&(p, ")|2.
(5)

Here " = (2n + 1)πT , εp is the energy of an electron and M , & are the mass operators with
vertex corrections and intersecting diagrams.

Near the temperature of the superconducting transition (T ∼ TC) we can restrict our
consideration to terms linear in the operator &. In the diagram representation, we have

M(p, ") =

&(p, ") =

.

(6)

In these diagrams, solid lines for M and & usually represent the electron Green functions (5)
linearized in terms of the quantity &:

G(p, ") = [
i" − εp − M(p, ")

]−1

F↑↓(p, ") = G(−p,−")&(p, ")G(p, ").
(7)

The wavy line in (6) represents the phonon Green function:

D(p − p1, " − "1) = −g2
pp1

ω2
0

(" − "1)2 + ω2
0

(8)

with the simple Einstein spectrum ω0. Expressions (6) can be derived in the form

M(p, ") = 1

βV

∑
p1"1

VN(pp1)G(p1, "1) (9)
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&(p, ") = 1

βV

∑
p1"1

VS(pp1)F↑↓(p1, "1)

= 1

βV

∑
p1"1

VS(pp1)G(p1, "1)G(−p1,−"1)&(p1, "1) (10)

where

VN(pp1) = −D(p − p1, " − "1) [1 + λPV (pp1, ""1)] (11)

VS(pp1) = −D(p − p1, " − "1)[1 + λPV (pp1, ""1)

+ λPV (pp1,−"−"1) + λPc(pp1, ""1)] (12)

where λ = g2N0, N0 is the density of electron states on the Fermi surface, and PV and Pc are
the vertex functions determined by the relationships

PV (pp1, ""1) = 1

βV

γ

N0

∑
p2"2

θ(qc − |p − p2|) ω2
0

(" − "2)2 + ω2
0

× G(p2, "2)G(p1 + p2 − p, "1 + "2 − ")

Pc(pp1, ""1) = 1

βV

γ

N0

∑
p2"2

θ(qc − |p − p2|) ω2
0

(" − "2)2 + ω2
0

× G(p2 − p − p1, "2 − " − "1)G(p2, "2).

(13)

The first terms in the effective interactions (11) and (12) correspond to adiabatic con-
tributions; the rest correspond to diagrams with intersecting lines for the electron–phonon
interaction.

2.1. Two-dimensional systems

We introduce a quadratic dispersion law for the electron energy:

εp = p2
x + p2

y

2m
− µ. (14)

In this case γ = π/Qc.
Then we insert the Green function (7) in a zeroth approximation for the electron–phonon

interaction in the expression (13) and go from summation over p2, "2 to integration according
to the formula

1

βV

∑
p2"2

F(p2, "2) = N0

∫ 2π

0

dϕ

2π

∫ W−µ

−µ

dεp2

1

2π

∫ ∞

−∞
d"2 F(p2, "2) (15)

where N0 = m/2π , W is the halfwidth of the energy band, µ is the chemical potential.
Here we have introduced an electron–hole asymmetry in the integration over energy, and

also assumed that TC � ω0, which allows us to go to integration over frequency for TC → 0.
In accordance with (14), for low values of the transferred momentum q = |pF − p1F | we

have

εp2+p1−p ≈ εp2 + EQ2 ϕ
2

2
+ EQ

√
1 − Q2ϕ

εp2−p1−p ≈ εp2 + E(1 − Q2)
ϕ2

2
− EQ

√
1 − Q2ϕ

(16)

where

E = 4EF Q = q

2pF

EF = p2
F

2m
.
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After carrying out the integration over frequency and energy in (13) and then integration over
ϕ (taking into account its smallness), we have the vertex functions in the form

PV (pp1, ""1) = PV (QQc,""1) = Re PV (QQc,""1) + i Im PV (QQc,""1)

Pc(pp1, ""1) = Pc(QQc,""1) = Re Pc(QQc,""1) + i Im Pc(QQc,""1).
(17)

Conserving the terms of the order Q4 at µ > 2EQ2
c , we derive

Re PV (QQc,""1) ≈ ω0B(""1) +
ω0

(" − "1)2

[
A(""1) − (" − "1)

2B(""1)
]

×
[

1 − E2

(" − "1)2

4

3
Q2Q2

c

]
+

ω0E

(" − "1)2
C(""1)QQc

Re Pc(QQc,""1)

≈ ω0B(",−"1) +
ω0

(" + "1)2

[
A(",−"1) − (" + "1)

2B(",−"1)
]

×
[

1 − E2

(" + "1)2

(
4

5
Q4

c − 2QQ3
c +

4

3
Q2Q2

c

)]
+

ω0E

(" + "1)2
C(",−"1)

[
2

3
Q2

c − QQc

]
(18)

and

Im PV (QQc,""1) ≈ ω0B1(""1) +
ω0

(" − "1)2

[
A1(""1) − (" − "1)

2B1(""1)
]

×
[

1 − E2

(" − "1)2

4

3
Q2Q2

c

]
+

ω0E

(" − "1)2
C1(""1)QQc

Im Pc(QQc,""1) ≈ ω0B1(",−"1)

+
ω0

(" + "1)2

[
A1(",−"1) − (" + "1)

2B1(",−"1)
]

×
[

1 − E2

(" + "1)2

(
4

5
Q4

c − 2QQ3
c +

4

3
Q2Q2

c

)]
+

ω0E

(" + "1)2
C1(",−"1)

[
2

3
Q2

c − QQc

]

(19)

where

A(""1) = " − "1

2

[
2 arctan

"

ω0
− arctan

"

W − µ + ω0
− arctan

"

µ + ω0

+ arctan
"1

µ + ω0
− 2 arctan

"1

ω0
+ arctan

"1

W − µ + ω0

]
B(""1) = − µ + ω0

2
[
(µ + ω0)2 + "2

1

]2

[
(µ + ω0)

2 + 2"2
1 − ""1

]
− W − µ + ω0

2
[
(W − µ + ω0)2 + "2

1

]2

[
(W − µ + ω0)

2 + 2"2
1 − ""1

]
C(""1) = 1

4
ln

(W − µ + ω0)
2 + "2

(µ + ω0)2 + "2
− 1

4
ln

(W − µ + ω0)
2 + "2

1

(µ + ω0)2 + "2
1

+ "1(" − "1)
1

2

[
1

(µ + ω0)2 + "2
1

− 1

(W − µ + ω0)2 + "2
1

]

(20)
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and

A1(""1) = " − "1

4

{
ln

(W − µ + ω0)
2 + "2

1

(µ + ω0)2 + "2
1

− ln
(W − µ + ω0)

2 + "2

(µ + ω0)2 + "2

}
B1(""1) = "1

2

[
1

(µ + ω0)2 + "2
1

− 1

(W − µ + ω0)2 + "2
1

]
+

" − "1

4

[
(µ + ω0)

2 − "2
1[

(µ + ω0)2 + "2
1

]2 − (W − µ + ω0)
2 − "2

1[
(W − µ + ω0)2 + "2

1

]2

]

C1(""1) = 1

2

[
2 arctan

"

ω0
− arctan

"

W − µ + ω0
− arctan

"

µ + ω0

+ arctan
"1

µ + ω0
− 2 arctan

"1

ω0
+ arctan

"1

W − µ + ω0

]
+

" − "1

2

[
µ + ω0

(µ + ω0)2 + "2
1

+
W − µ + ω0

(W − µ + ω0)2 + "2
1

]
.

(21)

Then we perform an averaging over the Fermi surface, using the expressions (18) and (19),
according to the formula

PV,c(Qc,""1) = π

Qc

〈〈
θ(qc − |p − p1|)PV,c(pp1, ""1)

〉〉
FS

= 1

Qc

∫ Qc

0
dQ PV,c(QQc,""1). (22)

For the quantities Re PV,c(Qc,""1) and Im PV,c(Qc,""1) we obtain

Re PV (Qc,""1) = ω0B(""1) +
ω0

(" − "1)2

[
A(""1) − (" − "1)

2B(""1)
]

×
[

1 − E2

(" − "1)2

4

9
Q4

c

]
+

ω0E

(" − "1)2
C(""1)

Q2
c

2

Re Pc(Qc,""1)

= ω0B(",−"1) +
ω0

(" + "1)2

[
A(",−"1) − (" + "1)

2B(",−"1)
]

×
[

1 − E2

(" + "1)2

11

45
Q4

c

]
+

ω0E

(" + "1)2
C(",−"1)

Q2
c

6

(23)

and

Im PV (Qc,""1) = ω0B1(""1) +
ω0

(" − "1)2

[
A1(""1) − (" − "1)

2B1(""1)
]

×
[

1 − E2

(" − "1)2

4

9
Q4

c

]
+

ω0E

(" − "1)2
C1(""1)

Q2
c

2

Im Pc(Qc,""1)

= ω0B1(",−"1) +
ω0

(" + "1)2

[
A1(",−"1) − (" + "1)

2B1(",−"1)
]

×
[

1 − E2

(" + "1)2

11

45
Q4

c

]
+

ω0E

(" + "1)2
C1(",−"1)

Q2
c

6
.

(24)

2.2. Three-dimensional systems

Here we will carry out calculations similar to those in [13], the only difference being that we
take into account the variable charge-carrier density (electron–hole asymmetry) and do not
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neglect the imaginary parts of the vertex functions PV and Pc.
We perform the integration in expression (13) according to the relationship

1

βV

∑
p2"2

F(p2, "2) = N0

∫ 2π

0

dϕ

2π

∫ π

0

sin α

2
dα

∫ W−µ

−µ

dεp2

1

2π

∫ ∞

−∞
d"2 F(p2, "2) (25)

where N0 = mpF/2π2. At low values of the transferred momentum Q = q/2kF we have [13]

εp2+p1−p ≈ εp2 + EQα cosϕ εp2−p1−p ≈ εp2 + E
α2

2
− EQα cosϕ (26)

where α is angle between vectors p and p2.
Then we carry out calculations in the same way as in the two-dimensional case, averaging

according to the relationship

PV,c(Qc,""1) = 1

Q2
c

〈〈
θ(qc − |p − p1|)PV,c(pp1, ""1)

〉〉
FS

= 2

Q2
c

∫ Qc

0
Q dQ PV,c(QQc,""1) (27)

and derive

Re PV (Qc,""1) = ω0A(""1)

(" − "1)2
− ω0E

2

(" − "1)4

[
A(""1) − (" − "1)

2B(""1)
] 1

2
Q4

c

Re Pc(Qc,""1) = ω0A(",−"1)

(" + "1)2
− ω0E

2

(" + "1)4
[A(",−"1)

− (" + "1)
2B(",−"1)]

11

6
Q4

c +
ω0E

(" + "1)2
C(",−"1)Q

2
c

(28)

and

Im PV (Qc,""1) = ω0A1(""1)

(" − "1)2
− ω0E

2

(" − "1)4

[
A1(""1) − (" − "1)

2B1(""1)
] 1

2
Q4

c

Im Pc(Qc,""1) = ω0A1(",−"1)

(" + "1)2
− ω0E

2

(" + "1)4
[A1(",−"1)

− (" + "1)
2B1(",−"1)]

11

6
Q4

c +
ω0E

(" + "1)2
C1(",−"1)Q

2
c .

(29)

Comparing the expressions (23) and (24) for the real and imaginary parts of the vertex
functions for the two-dimensional superconductor to equations (28) and (29) for the three-
dimensional case, we can clearly see that they differ by numerical coefficients in the terms
containing Q2

c and Q4
c .

3. Critical temperature and the equation for Qc

For the effective electron–phonon interaction (11), (12), averaged over the Fermi surface,
taking into account all of the calculations mentioned above, we have

〈〈VN(pp1)〉〉FS = ω2
0

(" − "1)2 + ω2
0

g2 [1 + λPV (Qc,","1)]

〈〈VS(pp1)〉〉FS = ω2
0

(" − "1)2 + ω2
0

g2[1 + λPV (Qc,","1)

+ λPV (Qc,−",−"1) + λPc(Qc,","1)].

(30)
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The expression for the Green function is given in the form

G(p, ") = 1

i"̃ − εp

(31)

where

"̃ = " − Im M(").

For the self-energy operators we derive

M(") = g2

βV

∑
p1"1

ω2
0

(" − "1)2 + ω2
0

[1 + λPV (Qc, 0, ω0)]G(p1, "1) (32)

&(") = g2

βV

∑
p1"1

ω2
0

(" − "1)2 + ω2
0

[1 + 2λPV (Qc, 0, ω0)

+ λPc(Qc, 0, ω0)]G(p1, "1)G(−p1,−"1). (33)

On the basis of (31), (32) and (15) or (25), after performing the summation over p1 and
"1, we obtain the following expression:

"̃ = "Z(") + Z1 (34)

where

Z(") = 1 + λz

1

2

[
W − µ

W − µ + 1
+

µ

µ + 1

]
+ λ2 Im PV (Qc, 0, ω0)

"

ω0

1

4
ln

(W − µ)2 + 1

µ2 + 1

Z1 = λ2 Im PV (Qc, 0, ω0)
ω0

2
ln

(W − µ)2 + 1

µ2 + 1
W = W

ω0
µ = µ

ω0

λz = λ [1 + λRe PV (Qc, 0, ω0)] .

(35)

After performing the integration over energy in (33), with account taken of the electron–
hole asymmetry and definitions (31) and (34), we obtain

&(") = 1

β

∑
"1

(λ0 + iλ2η)
&("1)

"1Z
[ϕ1("1) + iϕ2("1)]

ω2
0

(" − "1)2 + ω2
0

(36)

where

ϕ1("1) = 1

2

[
arctan

W − µ

Z"1 + Z1
+ arctan

µ

Z"1 + Z1

]
+

1

2

[
arctan

W − µ

Z"1 − Z1
+ arctan

µ

Z"1 − Z1

]
ϕ2("1) = 1

2
ln

(W − µ)2 + (Z"1 − Z1)
2

µ2 + (Z"1 − Z1)2
− 1

2
ln

(W − µ)2 + (Z"1 + Z1)
2

µ2 + (Z"1 + Z1)2

(37)

and

λ0 = λ(1 + λRe PV (Qc, 0, ω0) + λRe Pc(Qc, 0, ω0)) (38)

η = Im[2PV (Qc, 0, ω0) + Pc(Qc, 0, ω0)]. (39)

From expressions (36) it follows that &(") is a complex quantity. Thus we present it in the
form & = &1 +i&2, taking into account the approximations that are used in both adiabatic [19]
and non-adiabatic theory [13], and this changes (36) to the system of equations

&1(") = ω2
0

"2 + ω2
0

V1A
0
1 − ω2

0

"2 + ω2
0

V2A
0
2 &2(") = ω2

0

"2 + ω2
0

V2A
0
1 +

ω2
0

"2 + ω2
0

V1A
0
2

(40)
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where

V1 = λ0 − λ2η
ϕ2(ω0)

ϕ1(ω0)
V2 = λ0

ϕ2(ω0)

ϕ1(ω0)
+ λ2η (41)

A0
1 = 1

β

∑
"1

ω2
0

"2
1 + ω2

0

ϕ1("1)

"1Z
&1("1) A0

2 = 1

β

∑
"1

ω2
0

"2
1 + ω2

0

ϕ1("1)

"1Z
&2("1). (42)

Inserting (40) in (42) we derive

A0
1 = A0

1V1ξc − A0
2V2ξc A0

2 = A0
1V2ξc + A0

2V1ξc (43)

where

ξc = 1

β

∑
"1

ω4
0

("2
1 + ω2

0)
2

ϕ1("1)

"1Z
. (44)

The temperature of the superconducting transition is determined from the consistency
condition for the system of equations (43). We derive

(V 2
1 + V 2

2 )ξ
2
c − 2V1ξc + 1 = 0. (45)

Therefore,

ξc =
V1 ±

√
−V 2

2

V 2
1 + V 2

2

. (46)

We obtain the real solution for the quantity TC provided that V2 = 0. This condition gives,
to the accuracy of the first order in the non-adiabaticity,

ξc � 1/V1 ≈ 1/λ0 (47)

η = Im[2PV (Qc, ω0) + Pc(Qc, ω0)] = 0. (48)

After carrying out the integration over "1 in (44) and inserting this expression in (47), we
derive

TC = 1.13ω0
[
(W − µ)µ

]1/2

√
e
[
(W − µ + 1)(µ + 1)

]1/2 exp

{
− Z

λ0

+
1

4

[
1

W − µ + 1
+

1

µ + 1

]}
. (49)

Then we apply the law of conservation of carriers (n is a charge-carrier density) to this
expression:

n = 2

βV

∑
k"

G(k, ")ei"0+
. (50)

After carrying out the integration over k and " in this equation, with account taken of the
electron–hole asymmetry, we derive

µ = Zn (51)

where µ = µ/ω0, n = n/(2N0ω0).
Self-consistent study of (49) and (51) allows us to obtain the dependence of the quantity

TC on the charge-carrier density n. Condition (48), which takes account of the imaginary parts
of the vertex functions, is an equation for determining the cut-off parameter of the electron–
phonon interaction Qc for a given n.

In the two-dimensional case, inserting (19) in (48) we derive the equation

aQ4
c − bQ2

c − d = 0 (52)
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where m = 2ω0/E = 1/(2n) and

a = 29

45

(
2

m

)2 [
A1(0, ω0)

ω0
− ω0B1(0, ω0)

]
b = 5

3m
C1(0, ω0, µ) (53)

d = A1(0, ω0)

ω0
.

From definitions (53) the condition a � b follows, and as we are looking for the solution with
Q2

c � 1 we can present solutions to (52) in the form

Q2
c ≈ −d

b
. (54)

As b < 0, Qc is a real quantity at d > 0. The latter is valid at µ < W/2 (21). So,
superconductivity is possible in the two-dimensional system considered, with strong electron
correlations, at µ < W/2. At µ > W/2 nonphysical solutions arise (the parameter Qc

becomes an imaginary quantity). This fact allows us to reach the conclusion that for this range
of the charge-carrier density, superconductivity is absent (TC = 0).

In the case of a three-dimensional system we insert expression (29) in (48) and as a result
obtain

a1Q
4
c − b1Q

2
c + d1 = 0 (55)

or

Q2
c ≈ d1

b1

where

a1 = 5

6

(
2

m

)2 [
A1(0, ω0)

ω0
− ω0B1(0, ω0)

]
b1 = 2

m
C1(0, ω0) (56)

d1 = A1(0, ω0)

ω0
= d.

Here the values of Qc are real quantities if d < 0, and as a result superconductivity in the three-
dimensional system with strong electron correlations exists over the range W/2 < µ < W .
So, we can draw the following general conclusion. There is a value of ncr , at which super-
conductivity disappears and appears, in a two-dimensional and three-dimensional system,
respectively. On the basis of formulae (51) and (35), for µ = W/2 we derive

ncr = W/2

1 + λ
[
1 + λP cr

V (Qc, 0, ω0)
]
W/(W + 2)

(57)

where P cr
V (Qc, 0, ω0) = PV (Qc, 0, ω0)|µ=W/2.

Let us consider now the limit case of a symmetrical filling of an energy band in order
to compare our results with those in [13]. To do this we have to make the following
substitution: W − µ → E/2, µ → E/2. As a result we see that there are some coefficients
tending to zero, i.e. C(0, ω0) = 0, A1(0, ω0)/ω0 = 0, ω0B1(0, ω0) = 0. The coefficients
A(0, ω0)/ω0 and ω0B(0, ω0) transform into the corresponding expressions of [13] at Q2

c � 1,
but b1 = (2/m)C1(0, ω0) �= 0 (21) is absent in [13]. In this case equation (55) has the form
b1Q

2
c = 0. Because b1 �= 0 we should putQc = 0. Neglecting these terms (supposing b1 = 0),
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Qc in [13] seems to be able to take arbitrary values and is considered a theoretical parameter. In
fact, strictly speaking, at Qc �= 0 in a three-dimensional system with a symmetrical filling of an
energy band, superconductivity is absent because the quantity ξc determining the temperature
of the superconducting transition is a complex quantity.

For the coefficient of the isotope effect, on the basis of (49) we have

α = −d ln TC

d ln M
= 1

2

[
1 +

d ln TC/ω0

d ln ω0

]
(58)

where

d ln TC/ω0

d ln ω0
= −1

4

[
W − µ + 2

(W − µ + 1)2
+

µ + 2

(µ + 1)2

]
− 1

λ0

dZ

d ln ω0
+

Z

λ2
0

dλ0

d ln ω0

dZ

d ln ω0
= −1

2

{
λ2

2

[
µ

(µ + 1)2 + 1
+

W − µ

(W − µ + 1)2 + 1

]
×

[
W − µ

W − µ + 1
+

µ

µ + 1

]
+ λz

[
W − µ

(W − µ + 1)2
+

µ

(µ + 1)2

]}
dλ0

d ln ω0
= −3λ2

2

[
µ

(µ + 1)2 + 1
+

W − µ

(W − µ + 1)2 + 1

]
.

(59)

In deriving the formulae (58), (59), we have omitted the terms containing Qc because the
contribution of this parameter is negligible at low values.

4. Numerical calculations and discussion of results

We have discussed the influence of a non-adiabaticity effect on the temperature of the super-
conducting transition TC and on the coefficient of the isotope effect in quasi-two-dimensional
and three-dimensional systems. The quantity TC is determined by formulae (49) and (51), and
the coefficient of the isotope effect α by (58) and (59). We have found a surprising singularity
in the behaviour of these quantities: in two-dimensional systems, superconductivity appears
at low densities of charge carriers n and disappears at ncr (µ = W/2), which corresponds to
a symmetrical filling of an energy band. In a three-dimensional system, on the other hand,
superconductivity appears at n = ncr (µ = W/2) and disappears at µ = W . Therefore, if
we assume that the distribution of carriers is becoming spatially homogeneous in the system
with the increase of the charge-carrier density, then the transition from a two-dimensional
to a three-dimensional system occurs over the whole field of values 0 < µ < W . In this
way, all quantities that appear in the definitions of TC and α (Z, λ0, λz) at n < ncr can be
determined from the formulae for a two-dimensional system and those appearing at n > ncr

can be determined from the formulae for a three-dimensional one. If the transition does not
take place, we should conclude that the feasibility of superconductivity in systems with strong
electron correlations (Qc � 1) is governed by the dimensionality of the system.

The quantity Qc is not a constant quantity and is dependent on the charge-carrier density.
At the point n = ncr we have Qc = 0. The dependence of Qc as a function of n at various
values of λ and W is shown in figure 1. Curves labelled by numbers without primes denote the
results for a two-dimensional system, and those labelled by numbers with primes denote the
results for a three-dimensional system. The vertical dashed lines in this and the other figures
correspond to the boundaries between the fields of superconductivity in two-dimensional and
three-dimensional systems. The intersection of such a line with the abscissa gives the critical
value of the parameter n (ncr) at which superconductivity disappears in a two-dimensional
system and is induced in a three-dimensional system. The quantity Qc decreases with the
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Figure 1. The dependence of the cut-off momentum Qc on the charge-carrier density n. Curves
1, 1′ correspond to λ = 0.5,W = 6; curves 2, 2′ correspond to λ = 0.5,W = 4; curves 3, 3′
correspond to λ = 0.3,W = 6; curves 4, 4′ correspond to λ = 0.3,W = 4.

increase of n and approaches zero at n = ncr in a two-dimensional system and increases
slightly (from the value Qc = 0) with increase of n in a three-dimensional system. These
values of Qc, obtained as a result of the solutions for (52), (55) and (51), are used further to
calculate the dependence of the temperature of the superconducting transition on n on the basis
of formulae (49), (51) and others which determine the quantities appearing in (49) and (51).

Figure 2 shows this dependence: the ratio TC/ω0 increases with the increase of n for a
two-dimensional system and decreases for a three-dimensional one. There we observe the
essential dependence of TC/ω0 on the parameters λ and W . It follows from this figure that
the effects of non-adiabaticity increase TC/ω0 (at the values of λ = 0.5 and 0.3 considered)
approximatively three times as much as that for ordinary superconductors (compare 1, 1′ and
2, 2′ with curve 5, and also 3, 3′ and 4, 4′ with curve 6). So, if we apply a theory for describing
superconductivity in oxide ceramics, we can come to the following conclusion. Upon doping
a system with an oxygen or non-isovalent impurity, which favours increase of the charge-
carrier density, it is possible to obtain the values of TC characteristic of these materials even at
intermediate values of the interaction coupling λ, due to the effect of non-adiabaticity. Taking
account of other singularities of high-TC materials—for example, overlapping of energy bands
[4–6] as well as the effect of non-adiabaticity—can create more favourable conditions for a
higher TC .

Figure 3 shows the dependence of the coefficient of the isotope effect α on the charge-
carrier density: with the increase of n in a two-dimensional system, α increases, and in a
three-dimensional one, it decreases. The coefficient α depends on λ and W in the same way as
TC . Therefore, low values of α are possible at low n in a two-dimensional system and at high
n in a three-dimensional one. For the range of the maximum values of TC for the theoretical
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Figure 2. The dependence of the temperature of the superconducting transition TC on the charge-
carrier density n. Curves 1–4, 1′–4′ correspond to TC and the values of λ and W for these curves
coincide with those for figure 1. Curves 5, 5′ and 6, 6′ correspond to TC0 with λ = 0.5,W = 4
and λ = 0.3,W = 4, respectively.

Figure 3. The dependence of the coefficient of the isotope effect α on the charge-carrier density
n. The labelling of the curves corresponds to that for figure 1.
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parameters given above, we obtain α ∼ 0.3–0.4. These values are higher than those observed
experimentally for some oxide ceramics. In the case of a narrow energy band (W ∼ ω), the
coefficient α can achieve values ∼0.2, which is in accordance with experimental data. These
results confirm the non-phonon essence of a superconductivity pairing mechanism in high-TC

materials (W � ω0). The above-suggested non-adiabatic theory forTC-determination is stated
above to be valid for both electron–phonon and non-phonon mechanisms of superconductivity
at low values of the transferred momentum q � 2kF .

Figure 4 shows the dependences of TC/ω0 and α on the parameter 1/(2ncr) for a three-
dimensional case at Qc = 0. It corresponds totally to the results in [13] for low values of
Qc (Qc � 1) taking into consideration the dependence of these quantities on the Migdal
parameter (=m|µ=W/2 = 1/(2ncr)) in systems with half-filled energy bands. The analysis of
this result shows that low values of α, near half-filling of the energy band with the maximum
TC , can be obtained for a system with narrow energy bands (W ∼ 1; bandwidth W is of the
same order as the Debye frequency ω0).

Figure 4. The dependence of the temperature of the superconducting transition TC and of the
coefficient of the isotope effect α on the parameter 1/(2ncr ) which corresponds to the Migdal
parameter m = (ω0/EF )|µ=W/2 for systems with half-filled energy bands.
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